Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 78(5): 1182-1190, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897328

RESUMO

OBJECTIVES: Calcium-binding motifs are shared by multiple bacteriophage lysins; however, the influence of calcium on the enzymatic activity and host range of these enzymes is still not understood. To address this, ClyF, a chimeric lysin with a putative calcium-binding motif, was used as a model for in vitro and in vivo investigations. METHODS: The concentration of calcium bound to ClyF was determined by atomic absorption spectrometry. The influence of calcium on the structure, activity and host range of ClyF was assessed by circular dichroism and time-kill assays. The bactericidal activity of ClyF was evaluated in various sera and a mouse model of Streptococcus agalactiae bacteraemia. RESULTS: ClyF has a highly negatively charged surface around the calcium-binding motif that can bind extra calcium, thereby increasing the avidity of ClyF for the negatively charged bacterial cell wall. In line with this, ClyF exhibited significantly enhanced staphylolytic and streptolytic activity in various sera containing physiological calcium, including human serum, heat-inactivated human serum, mouse serum and rabbit serum. In a mouse model of S. agalactiae bacteraemia, intraperitoneal administration of a single dose of 25 µg/mouse ClyF fully protected the mice from lethal infection. CONCLUSIONS: The present data collectively showed that physiological calcium improves the bactericidal activity and host range of ClyF, making it a promising candidate for the treatment of infections caused by multiple staphylococci and streptococci.


Assuntos
Bacteriemia , Infecções Estreptocócicas , Camundongos , Animais , Humanos , Coelhos , Cálcio , Especificidade de Hospedeiro , Streptococcus , Infecções Estreptocócicas/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia
2.
Autophagy ; 19(1): 163-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404187

RESUMO

Macroautophagy/autophagy is a cellular and energy homeostatic mechanism that contributes to maintain the number of primordial follicles, germ cell survival, and anti-ovarian aging. However, it remains unknown whether autophagy in granulosa cells affects oocyte maturation. Here, we show a clear tendency of reduced autophagy level in human granulosa cells from women of advanced maternal age, implying a potential negative correlation between autophagy levels and oocyte quality. We therefore established a co-culture system and show that either pharmacological inhibition or genetic ablation of autophagy in granulosa cells negatively affect oocyte quality and fertilization ability. Moreover, our metabolomics analysis indicates that the adverse impact of autophagy impairment on oocyte quality is mediated by downregulated citrate levels, while exogenous supplementation of citrate can significantly restore the oocyte maturation. Mechanistically, we found that ACLY (ATP citrate lyase), which is a crucial enzyme catalyzing the cleavage of citrate, was preferentially associated with K63-linked ubiquitin chains and recognized by the autophagy receptor protein SQSTM1/p62 for selective autophagic degradation. In human follicles, the autophagy level in granulosa cells was downregulated with maternal aging, accompanied by decreased citrate in the follicular fluid, implying a potential correlation between citrate metabolism and oocyte quality. We also show that elevated citrate levels in porcine follicular fluid promote oocyte maturation. Collectively, our data reveal that autophagy in granulosa cells is a beneficial mechanism to maintain a certain degree of citrate by selectively targeting ACLY during oocyte maturation.Abbreviations: 3-MA: 3-methyladenine; ACLY: ATP citrate lyase; AMA: advanced maternal age; CG: cortical granule; CHX: cycloheximide; CQ: chloroquine; CS: citrate synthase; COCs: cumulus-oocyte-complexes; GCM: granulosa cell monolayer; GV: germinal vesicle; MII: metaphase II stage of meiosis; PB1: first polar body; ROS: reactive oxygen species; shRNA: small hairpin RNA; SQSTM1/p62: sequestosome 1; TCA: tricarboxylic acid; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild-type.


Assuntos
ATP Citrato (pro-S)-Liase , Macroautofagia , Feminino , Humanos , Animais , Suínos , Proteína Sequestossoma-1/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Ácido Cítrico/metabolismo , Autofagia , Oócitos/metabolismo , Citratos/metabolismo , Aciltransferases/metabolismo , Ubiquitina/metabolismo , Homeostase
3.
Food Funct ; 13(13): 7287-7301, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35726797

RESUMO

Hepatic lipid accumulation, inflammation and gut microbiota dysbiosis are hallmarks of non-alcoholic fatty liver disease (NAFLD), which is the leading cause of chronic liver disease with no therapeutic consensus. The aim of the present study was to elucidate the mechanism of the effects of Astragalus mongholicus polysaccharides (mAPS) on lipid metabolism, inflammation and gut microbiota in a rat model of NAFLD induced by a high-fat diet (HFD). Our results showed that mAPS and Berberine supplementation reduced HFD-induced increases in body weight, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and homeostasis model assessment of insulin resistance (HOMA-IR), and these changes were accompanied by improved histological changes in the liver. Moreover, administration of mAPS and Berberine resulted in lower levels of serum triglycerides, total cholesterol and low-density lipoprotein cholesterol (LDL-c) but higher levels of high-density lipoprotein cholesterol (HDL-c) in HFD-fed rats. mAPS and Berberine treatment markedly reduced HFD-induced hepatic lipid accumulation, which was associated with increased expression of phosphorylated- adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) but decreased expression of sterol-regulatory element binding proteins (SREBP-1). Pretreatment with mAPS or Berberine reduced HFD-induced expression of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α). In addition, mAPS downregulated the expression of colonic and hepatic Toll-like receptor 4 (TLR4) as well as phosphorylated- nuclear factor-κB (NF-κB) and nucleotide-binding domain, leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) but upregulated the expression of zonula occludens-1 (ZO-1) and occludin in HFD-fed rats. Notably, mAPS treatment reshaped the intestinal microbiome by lowering the Firmicutes to Bacteroidetes (F/B) ratio and increasing the abundance of Proteobacteria and Epsilonbacteria. mAPS supplementation had little effect on the profile of fecal short-chain fatty acids (SCFAs), but it significantly decreased the expression of colonic and hepatic G-protein coupled receptor (GPR) 41 and 43. Therefore, mAPS supplementation ameliorates hepatic inflammation and lipid accumulation in NAFLD by modulating the gut microbiota and SCFA-GPR signaling pathways. The present study provides new evidence for mAPS as a natural active substance in the treatment of NAFLD.


Assuntos
Berberina , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Astragalus propinquus , Berberina/farmacologia , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polissacarídeos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...